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I n  the perturbation theory of a shear flow, a small-lengthscale turbulent perturbation 
field component developing from the pre-existing turbulence is taken into account 
along with the usual long-wave (smooth) component. The perturbation turbulence 
field is assumed to be fully developed, and to satisfy the Kolmogorov-type similarity 
hypotheses. At the same time the perturbations of the mean velocity field and its 
gradient due to turbulence are assumed to be small. Under some approximations 
a closed autonomous set of equations governing the evolution of the turbulent 
perturbation field can be obtained and qualitatively investigated. The investigation 
shows in particular that, depending on the initial conditions, the turbulent energy of 
perturbation can either increase monotonically, or decrease a t  first and only later 
start to increase. 

Thus, the proposed model of laminar-turbulent transition includes two mech- 
anisms : the usual mechanism of nonlinear self-modulation of long-wave per- 
turbation components, which prevails for small pre-existing turbulence, and the 
mechanism of the evolution of the small-scale pre-existing turbulence which prevails 
otherwise. The experimental data are discussed and confirm qualitatively the 
proposed model. 

1. Introduction 
The history of turbulence studies usually is reckoned to start with the work of 

Osborne Reynolds, although two types of fluid motions were clearly distinguished 
and described by Leonardo da Vinci (c. 1509, see e.g. Popham 1964) and the very 
term belongs to Lord Kelvin. Moreover, it was Leonardo who described for the first 
time the coherent structures, so fashionable now. Nevertheless, following tradition 
we shall start with Reynolds. It was Reynolds who related the turbulence origin to  
the instability of a laminar fluid motion. He did not, however, identify which 
instability is dealt with. This left its mark on the further development of the whole 
theory in a crucial way, as we shall see later. The further development followed the 
natural path for a perturbation theory in a branch of theoretical physics. The 
perturbations u,(x, t )  and p l ( x ,  t )  of velocity and pressure fields were considered to  be 
small and smooth, so the perturbed velocity and pressure fields were represented in 
the form 

u(x ,  t )  = u,(x) +u,(x,  t),l 
P(X, t )  = POW) + P , ( X ,  +,I (1.1) 

Here u,(x) and p , ( x )  are velocity and pressure fields corresponding to  undisturbed 
steady motion, and x(xl, x2, x3), t are the coordinate vector and time respectively. 
Substituting the expressions (1.1) for the disturbed fields into the Navier-Stokes 
equations and neglecting the term (u, V) u, because of the smallness and smoothness 
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of the perturbation fields one obtains a well-known linear system of equations of 
linear stability theory (see e.g. Landau & Lifshitz 1959; Schlichting 1968; Kochin, 
Kibel & Roze 1948): 

1 (1.2) 
P(at U1 + (u, * v) U1 + (u, * v) u,) = -Vp, + V ~ S , ,  

1 v * u1 = 0. 

Here V7, = pvV2ul is the divergence of the viscous stress field corresponding to the 
perturbation of the velocity field, and v is the kinematic viscosity coefficient. The 
coefficients of the system (1.2) are time-independent ; therefore wave-type solutions 
appear, depending exponentially on time : 

(1.3) , - U ( x ) ,  p ,  = ePiRtP(x). 

Therefore, the spectral problem arises - that  of the determination of the complex 
eigenvalues 52 = SZ,+iS2,, etc. I n  the simplest formulation, for the perturbations of 
an arbitrary steady rectilinear shear flow along the x1 axis in the ( x ~ ,  x,)-plane, the 
classical Orr-Sommerfeld problem is obtained, namely 

- e-iRt 

subject to f (1)  = f ( - 1 )  =f’(l) = f ’ ( - 1 )  = o .  
In  these equations a is the dimensionless perturbation wavenumber, Re the 

Reynolds number, 5 = x2/h (it is assumed that the flow is contained between solid 
walls a t  x2 = -h and x 2  = h),  c = c,+ici is a dimensionless eigenvalue, f the 
dimensionless stream function of the perturbation field, and V ( [ )  the lateral 
distribution of the dimensionless velocity of the undisturbed shear flow. 

In  the precomputer era the solution to the problem (1.4) appeared to be rather 
difficult, so its study was not deprived of a certain drama (see Heisenberg 1969). 

Analogous problem statements are well known for other flows also: the viscous 
fluid rotation between cylinders and spheres, convection in a horizontal fluid layer, 
etc. For these latter flows there are typically a rather small number of vortices in a 
typical case, so accordingly, in applications to these systems, so-called scenarios of 
turbulence development, under transition through neutral surfaces in the parameter 
spaces, were designed, based on the use of low-dimension dynamical systems. 

The beginning of linear instability does not, however, mean the transition to 
turbulence. In  this respect the study of laminar-turbulent transition in a boundary 
layer became specially instructive. Tollmien (1929) and Schlichting (1933) investi- 
gated the stability of a rectilinear shear flow with the velocity profile of a boundary 
layer on a plate. (It was assumed that the longitudinal variation of hydrodynamic 
fields could be neglected, so this study was assumed to  be able to give the answer to 
the stability problem of the actual boundary-layer flow on a platre.) An instability 
region in the (a ,  Re)-plane was found. Since c, = c,(a, Re), ci = ci(a, Re), a = a(Re, cr), 
we can determine (prescribing the dimensionless oscillation frequency c, and 
Reynolds number Re) the wavelength of the oscillations arising at a prescribed 
frequency : the instability under periodical forcing should appear in the form of 
waves. 

More than ten years later experimenters were still unable to observe these 
waves - the Tollmien-Schlichting waves - until H. Dryden understood the reason : 
the free-stream flow was too strongly turbulent even at  the entrance to the working 
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section of the wind tunnel. Under Dryden’s guidance a specialized ‘low-turbulence ’ 
wind tunnel was designed and his co-workers a t  the US National Bureau of 
Standards, Schubauer & Skramstad (1947) were able to observe the Tollmien- 
Schlichting wave. A recent photograph of Tollmien-Schlichting waves taken by 
Werlk can be found in the remarkable Album of Fluid Motion by Van Dyke (1981). 

I n  low- turbulence wind tunnels the secondary two- and three-dimensional 
instabilities of the Tollmien-Schlichting waves themselves can also be observed ; 
these are essentially nonlinear processes, leading ultimately to  turbulence. 

Let us try t o  formulate, however, a view as to what precisely Dryden and 
Schubauer & Skramstad achieved in this work. Schlichting (1968) writes about it as 
follows : ‘The experimental results reported in this Chapter show such complete 
agreement with the theory of stability of laminar flows that the latter may now be 
considered as a verified component of fluid mechanics. The hypothesis that the 
process of transition from laminar to turbulent flow is the consequence of an 
instability in the laminar flow, enunciated by 0. Reynolds, is hereby completely 
vindicated. It certainly represents a possible and observable mechanism of transition. 
The question as to whether it paints a complete picture of the process and whether it 
constitutes the only mechanism encountered in nature is  still at present an  open one ’ (the 
italics are mine - G. B.). The last sentence is very instructive ; it is missing in the first 
editions of Schlichting’s book. In  fact, Dryden, Schubauer and Skramstad showed, 
by their experiments in a low-turbulence wind tunnel, seemingly only that the 
Navier-Stokes equations are correct. At that time this was important, because the 
inability to observe the Tollmien-Schlichting waves provided doubts even on that 
point. However, from today’s viewpoint this is no more than a small piece from 
the history of this branch of hydromechanics. 

Indeed, for the observation of the Tollmien-Schlichting waves, a very low 
turbulence level u’/U a t  the entrance to the working section was required (u’ is the 
root-mean-square velocity fluctuation, and Uthe mean flow velocity). For a turbulence 
level even one order of magnitude higher than in low-turbulence wind tunnels, 
although the disturbances remain very small, the perturbation theory is no longer 
valid. The results of Dryden, Schubauer and Skramstad suggest in fact that the 
classical approach mentioned above is fundamentally insufficient. 

It is useful to  recall here the classical experiments of S. Kline’s Stanford group (see 
Offen & Kline 1975). These experiments confirmed clearly that turbulent flow 
contains a vortex cascade, whose interactions produce turbulent ‘bursts ’ - spots of 
quite fully developed turbulence. Their analysis of turbulent shear flows showed that 
the turbulence generation is entirely determined by these bursts. Therefore, in a 
perturbed flow the existence of small-lengthscale vortices in the flow from the very 
beginning should be taken into account, as well as the turbulence generated by their 
interaction. This is the purpose of the present work. We assume that, in spite of 
its small lengthscale and low energy, the perturbation turbulence is fully developed 
and the Kolmogorov (1942) similarity hypotheses can be applied. A closed set of 
equations for the turbulence properties can be obtained and investigated quali- 
tatively. Thus, the existence of two mechanisms of laminar-turbulent transition is 
clearly demonstrated : the usual evolution of long-wave perturbations with ultimate 
transition to turbulence, and the evolution of small-scale low-energy turbulence 
present in the flow from the very beginning. 
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2. Basic relations of the model 
As stated in Q 1, the properties of the perturbed flow are represented as a sum of 

those for the basic undisturbed steady flow, small long-wave perturbations of a 
standard type, and small-lengthscale and low-energy turbulent perturbations. The 
turbulent perturbation is represented as a cascade of small-lengthscale vortices 
whose energy is small in comparison with the energy of the basic flow. Since the 
lengthscale of the vortices is small in comparison with that of the basic flow, the field 
of the turbulent vortices can be considered as isotropic. The velocity and pressure 
fields of the disturbed flow are represented, consequently, not in the form (1.1) but 

(2.1) 
in the form 

(2.2) 

Here u'(x, t ) ,  p' (x ,  t )  are the velocity and pressure fields of small-lengthscale 
turbulence present, by assumption, in the flow from the very beginning and 
developing in time and space. 

Substituting (2.1) and (2.2) into the Navier-Stokes and continuity equations we 
obtain, after averaging over the ensemble of realizations of the vortex field (the bar 
denoting this probabilistic averaging), as is commonly done in turbulence studies, 

u = u,(x) + u,(x, t )  + u'(x, t ) ,  

P = POW + P l ( X >  t )  + P / ( X ,  4. 

- 
P(atu,+(u, - v )u ,+ (u , .  v)u,,) = -vP1+v(~,-pu'u'-pu,u,), (2.3a) 

v - u, = 0. (2.3b) 

Thus, under the divergence sign on the right-hand side of ( 2 . 3 ~ )  there is, besides the 
viscous stress r1 from the long wave disturbance, the viscous - stress tensor -pu"  
stipulated by turbulent perturbations, with components -pui ui, and the stress 
tensor -pulul, with the components -puXiulr, stipulated by the contribution of the 
nonlinear self-interaction of long-wave perturbations. As is seen, the set (2.3) is not 
closed. 

For closing this set we note an important point. According to our basic assumption 
the turbulence in the flow is of small lengthscale, i.e. its lengthscale is small in 
comparison with the characteristic lengthscale of the flow. It is natural therefore to 
take another basic assumption, of Kolmogorov-type self-similarity, concerning the 
turbulent perturbation : the structure of the vortex cascade field a t  all points of the 
flow is the same: only the vortex size and the energy may vary. This assumption 
means that all dimensionless properties of the vortex cascade field are the same, 
and consequently all statistical properties of the turbulence field are completely 
determined by the fluid density and two kinematic properties of different dimensions. 
As our choice of these kinematic properties, we take the turbulent energy per unit 
mass b = t(u;' + ui2 + uh2) and the dissipation rate of turbulent energy into heat per 
unit mass E .  A hypothesis of this type but in slightly different form was first proposed 
by Kolmogorov (1942) ; now it forms the basis of modern semi-empirical turbulence 
theories. In particular this hypothesis is essentially the basis of the well-known b-e 
model of semi-empirical turbulence theory (in the literature the notation k is more 
often used instead of b,  as well as the term k-s model; we prefer the original 
Kolmogorov notation). Let us note that, under the conditions of a laminar flow 
weakly disturbed by fully developed, although small-lengthscale and low-energy , 
turbulence-j- the Kolmogorov self-similarity hypothesis seems to be the most 

t The analogy with adult Lilliputians splendidly developed by Jonathan Swift (1726) seems to 
be appropriate here : they are small but they have everything that ordinary adult people have. 

- - -  
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appropriate one. For closing the system (2.3) the equations of turbulent energy and 
turbulent energy dissipation rate should be used. These equations are obtained, in 
the usual way, from the Navier-Stokes equations by multiplying by velocities, 
velocity gradients, etc., followed by probabilistic averaging and certain algebraic 
transformations (see e.g. Reynolds 1976). 

On account of our basic assumption concerning the universal structure of the 
turbulence field of the disturbance, all the kinematic statistical properties of 
the vortex field are determined by two of them: we have selected b and e. The 
dimensionless properties of the vortex field are universal. At the same time, owing to 
the small turbulence lengthscale, the isotropy of the turbulence and the smallness of 
the long-wave disturbance, the contributions of all perturbations (long-wave and 
turbulent ones) to the mean velocity field and its gradient can be neglected. 
Therefore in (2.3) the mean velocity field and its gradient can be taken from the 
undisturbed flow: steady rectilinear shear flow along the 2,-axis with the velocity 
varying in the 2,-direction, ua = u,(x,). 

The equations of turbulent energy and dissipation rate balance take the forms, 
when we neglect further the contributions of molecular viscosity (Reynolds 1976), 

a,b+u,a,b = a,V - -Vb +a-((a2uo)2-c, (: ) : 
Here a,  al, p, y ,  6 are universal constants according to our basic assumption about 
the self-similarity of turbulent perturbations. 

Comparison with experimental data for some special flows has given the following 
values for some of these constants (Reynolds 1976) : 

a = 0.07; y = 2; 6 = 0.08. (2.6 ) 

Equations (2.4) and (2.5) are, naturally, simplified relations of the b-c semi- 
empirical turbulence model, often applied to the calculation of turbulent flows. Note 
that in the case under consideration, when the turbulent perturbation is a low- 
energy, small-lengthscale and high-frequency field, the universality of the constants 
is a more rigorous implication of the adopted hypothesis. In  contrast to the fully 
developed turbulent flows, where the turbulence lengthscales are comparable with 
the global lengthscale of the flow and the contribution of turbulence to the mean 
velocity field is a significant one, the contribution of turbulence to the mean velocity 
and its gradient field is negligible here. 

Accordingly, the mean velocity gradient field can be considered as given before- 
hand: it is the velocity gradient field of the undisturbed flow. This very property 
makes the system (2.4), (2.5) a closed set of equations for two unknowns, b and e. 

For final closure of the set (2.3) it is necessary to complement the autonomous set 
of equations (2.4), (2.5) by a relation for Reynolds stress which, under the assumption 
adopted of isotropy of turbulent vortices, can be written in the form 

b2 - 
pu’u’ = - &b/+ up - D, 

8 

where D is the strain rate tensor corresponding to undisturbed flow. For the shear 
flow under consideration D,, = a, u,,, and all remaining components D, are equal to 
zero. This fact was used during the derivation of the system (2.4), (2.5). 
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3. Simplification and qualitative analysis of the system (2.4), (2.5) 
Let us reduce the system (2.4), (2.5) to  a dimensionless form, writing 

Here L is the characteristic flow lengthscale, e.g. its width h, uo is an initial velocity 
scale of the turbulent perturbation, and h is an initial lengthscale of the turbulent 
perturbation. Let us consider a steady state in the mean turbulent flow in which the 
perturbations are developing in the longitudinal 2,-direction. The equations (2.4) and 
(2.5) take the form 

where K = hU/Luo. 

It is clear that the parameter uoh/UL is a product of two small quantities; 
therefore we can neglect? the divergence terms, and the basic system of equations 
for the dimensionless properties of a turbulent flow, (3.2) and (3.3), takes an 
unexpectedly simple form, 

(3.4) 

(3.5) 

In (3.4) and (3.5) K = (h/L)/(u,/U) is the basic constant parameter for the 
problem under consideration which, in principle, can admit arbitrary positive values 
- it is the ratio of two small parameters. The system (3.4), (3.5) allows one to carry 
out a complete qualitative investigation in the (B, E)-plane, and can be reduced to 
a single quadrature. 

Let us consider first a degenerate case, dV/d[ = 0 (a shear-free flow). In  this case 
the system (3.4), (3.5) is reduced to a simple equation 

d B B  
dE yE' 
-=- 

whence B = const. x Elly. Substituting this relation into (3.4) we obtain, by 
integrating for large 5, 

i.e. a natural result - that for the decay of turbulent disturbances in a shear-free flow. 
Furthermore, the current lengthscale of the turbulent perturbation is determined by 
the relation 1 = A&/E x const., 

+ 0, B - <-"(y-') +. 0, (3.7) E - &-Y/(Y-l) 

(3.8) 

t Taking into account these terms gives no difficulties of principle. However, the simplified 
system is instructive and allows the most effective qualitative investigation, so it  should be 
considered in the first place. 
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t / B =  A , E  

B 

0 
E 

FIQURE 1. The qualitative investigation of integral curves in the phase plane of dimensionless 
turbulent energy - dimensionless dissipation rate. 

whence, as .$-+ 00, it follows according to (3.7) that 

1 ry @ - m - U  j m. (3.9) 

Therefore at large distances from the entrance to the working section of the wind 
tunnel the turbulence lengthscale becomes comparable with the flow lengthscale and 
the proposed model becomes invalid. 

In  the non-degenerate case dV/dc =# 0, we denote 

(3.10) 

Dividing (3.5) by (3.6) we reduce the system (3.5), (3.6) to a single quadrature, 

(3.11) 

Taking into account the numerical values of the parameters (2.8) we obtain the 
phase picture in the (B,E)-plane represented in figure 1 .  In fact, dividing (3.5) by 
(3.6) we obtain 

dB B a(K2(dV/dc)')B2-E2 
dE E 6 ( K 2 ( d ~ / d ~ ) 2 ) B 2 - ~ E 2 '  
-=- (3.12) 

so an invariant straight line exists : 

Furthermore, on the straight line 

(3.13) 

(3.14) 

the derivative dB/dE becomes infinite and changes its sign: this straight line is an 
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infinity isocline. The integral curves under the straight line B = A ,  E behave 
as E --f 00 according to B = const. x EllY. Finally, on the straight line 

(3.15) 

which is the zero isocline, these curves reach their minima. 
Figure 1 shows that, depending on the initial values of B and E ,  i.e. ultimately on 

the initial intensity and initial lengthscale of turbulent perturbations in a shear flow, 
the integral curves can be divided into two classes. On curves of the first class the 
quantity B, i.e. the turbulent energy, increases monotonically. On curves of the 
second class, B decreases at first and later, after reaching a certain minimum, starts 
to increase. 

4. Discussion and conclusion 
The simple model presented above confirms the prediction of Schlichting. The 

basic conclusion is that during laminar-turbulent transition in a shear flow there 
occurs, generally speaking, a competition between two mechanisms : ( 1 )  nonlinear 
instability of the usual type, and (2) the development of pre-existing turbulence. The 
first mechanism can be observed in its pure form when the pre-existing turbulence is 
sufficiently small. Mathematically it is expressed by the smallness of the contribution 
of the Reynolds stress -pu "  to the divergence term of equation ( 2 . 3 ~ )  

V(T1 -pu, u, - p m )  (4.1) 

in comparison with the term pu,u,. 
This particular mechanism is realized in low-turbulence wind tunnels : the 

proposed model can estimate quantitatively the limits of applicability of the classical 
approach. On the other hand, in the case when the evolution of the pre-existing 
turbulence plays the basic role, two types of development are possible. In the first 
case the turbulent energy increases monotonically, in the second one it decreases a t  
first as in the experiments of Batchelor & Townsend (1949) on the decay of grid 
turbulence, and only later starts to increase. In  some sense the proposed model is an 
alternative to the classical (Batchelor 1953) rapid distortion model. 

The model presented above is in qualitative accord with available experimental 
results : the occurrence of two different mechanisms of laminar-turbulent transition 
for different intensities of pre-existing turbulence in a boundary layer was noted in 
the paper by Kolyada & Paveliev (1986). The first mechanism, observed for small 
intensities of the pre-existing turbulence, corresponds to the growt,h of disturbances 
of a certain frequency (i.e. nonlinear self-excitation of long-wave disturbances). The 
second mechanism, observed for large pre-existing turbulence intensities, corrc- 
sponds to the development of a continuous spectrum without distinguished 
frequencies. Furthermore, in a recent paper by Rohr et al. (1988) the development of 
small turbulent disturbances in a shear flow with a constant shear rate was 
investigated. In that paper, instructive examples of the turbulent energy variation 
corresponding to both types indicated above can be found : the first as in figure 2, and 
second as in figure 3. 

The model presented above has obvious restrictions. First of all, the turbulence 
lengthscale increases with distance from the entrance section. When this lengthscale 
becomes comparable with the external flow lengthscale the model becomes, strictly 
speaking, invalid. Moreover, the question remains as to  whether the turbulence in 
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FIGURE 3. Experimental results from a water tunnel (Rohr et al. 1988, figure 6) showing the second 
type of turbulence evolution : the turbulent energy at first decreases and later starts to increase 
with downstream distance. 

the perturbed flow can be always considered as fully developed and whether the 
Kolmogorov- type similarity hypotheses remain applicable in their simplest form. We 
note, however, that  there exist more sophisticated models which can allow us to 
refine the quantitative calculations of turbulent perturbations. 

The author thanks, in conclusion, Professor M. T. Landahl (Cambridge, MA) and 
Dr A. A. Paveliev (Moscow) for valuable discussions. 
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